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I. INTRODUCTION

The field quality in magnet apertures, or any region that
is free of currents and magnetized material, is conveniently
described by a set of Fourier coefficients, known as field
harmonics or multipole coefficients. The coefficients are de-
termined from a measured field or a field computation on
a contour of a suitable coordinate system. They are then
compared to the general solution of the Laplace equation,
in order to obtain a description of the field in the interior
of the contour. Different coordinate systems are chosen to
describe fields in cosine-theta magnets, C-magnets, solenoids,
bent magnets, and wigglers. The goal of this paper is to show
that the underlying methodology is the same in all of the
above cases, provided that a sufficiently general approach is
adopted that allows to deal with the different representations
of the metric. In this abstract, we briefly recall the situation
in circular coordinates because they are the most commonly
used for the computation of fields in long accelerator magnets.
We then show a generalization of the method to elliptic
coordinates more suited to magnets where the beam pipe is not
circular, e.g., insertion devices for synchrotron light sources.

II. CIRCULAR HARMONICS

A general solution that satisfies the Laplace equation,
∇2Az = 0, can be found by the separation of variables
method. For Az = ρ(r)φ(ϕ) we obtain the solutions ρn(r) =
An rn + Bn r−n and φn(ϕ) = Cn sinnϕ + Dn cosnϕ.
As the vector potential is single-valued, it must be
a periodic function in ϕ with Az(r, 0) = Az(r, 2π).
The separation constant n takes integer values and
therefore the general solution of the Laplace equation is
Az(r, ϕ) =

∑∞
n=1(Anrn + Bnr−n)(Cn sinnϕ + Dn cosnϕ).

Let us consider the magnet aperture as the problem domain
and denote it Ωa. The condition that the flux density is
finite at r = 0 imposes Bn = 0. As the coefficients are
not determined at this stage, we save on notation and
rewrite the general solution for the vector potential in Ωa
as Az(r, ϕ) =

∑∞
n=1 r

n(An sinnϕ + Bn cosnϕ). The field
components can then be expressed as Br(r, ϕ) = 1

r
∂Az

∂ϕ =∑∞
n=1 nr

n−1(An cosnϕ − Bn sinnϕ), and Bϕ(r, ϕ) =
−∂Az

∂r = −
∑∞
n=1 nr

n−1(An sinnϕ + Bn cosnϕ), in Ωa.
Notice the appearance of the metric coefficient 1/r in the
derivative of the vector potential. Each value of the integer n in
the solution of the Laplace equation corresponds to a specific
flux distribution generated by ideal magnet geometries.
The three lowest values, n = 1,2,3 correspond to the
dipole, quadrupole, and sextupole flux density distributions.
Assuming that the radial component of the magnetic flux
density is measured or calculated at a reference radius

r = r0 as a function of the angular position ϕ, we obtain
the Fourier series expansion of the radial field component:
Br(r0, ϕ) =

∑∞
n=1(Bn(r0) sinnϕ + An(r0) cosnϕ),

where An(r0) = 1
π

∫ 2π

0
Br(r0, ϕ) cosnϕ dϕ and Bn(r0) =

1
π

∫ 2π

0
Br(r0, ϕ) sinnϕ dϕ for n = 1, 2, 3, . . .. Comparing the

coefficients in the two expressions for the Br component we
obtain An = 1

n rn−1
0

An(r0) and Bn = −1
n rn−1

0

Bn(r0). Thus the
field components in the entire domain Ωa can be expressed as
Br(r, ϕ) =

∑∞
n=1 (r/r0)

n−1
(Bn(r0) sinnϕ+An(r0) cosnϕ)

and Bϕ(r, ϕ) =
∑∞
n=1(r/r0)

n−1
(Bn(r0) cosnϕ −

An(r0) sinnϕ). The normal and skew multipole coefficients
Bn(r0), An(r0) are given in units of tesla at a reference
radius r0, usually chosen to about 2/3 of the magnet aperture
[1]. However, the situation is not always that easy because in
some coordinate systems the metric coefficient may depend
on the angular coordinates as well, which does not allow a
direct comparison of coefficients with the Fourier transform.
A method to circumvent this problem is presented in the next
chapter.

III. SEPARATION IN PLANE ELLIPTIC COORDINATES

Consider a plane ellipse, centered at the origin, with major-
semi axis a and minor-semi axis b. A system of elliptic
coordinates is defined by the mapping T : R2 → R2 :
(η, ψ) 7→ (x, y) for 0 ≤ η < ∞ and −π ≤ ψ ≤ π
according to x = e cosh η cosψ, y = e sinh η sinψ, where
e =
√
a2 − b2 is the distance between the origin and the focal

points. For the reference ellipse with semi axes b = e sinh η0
and a = e cosh η0 it follows that η0 = artanh(b/a) for
a > b. The scale factors for the elliptic coordinates are h1 =

h2 = e
√

cosh2 η − cos2 ψ. Written in plane elliptic coordi-
nates, the Laplace equation for the vector potential takes the
form: ∇2Az = 1

e2(cosh2 η−cos2 ψ)

(
∂2Az

∂η2 + ∂2Az

∂ψ2

)
= 0. The

separation of variables technique yields for Az = H(η)Ψ(ψ)
two ordinary differential equations with the solutions Hp(η) =
Ap cosh pη+Bp sinh pη and Ψp(ψ) = Cp cos pψ+Dp sin pψ.
Since Ψ is a 2π-periodic function, the separation constant p
takes only integer values. In [2] it is shown that indeed not all
eigenfunctions resulting from the above equations are required.
A complete system of orthogonal eigenfunctions is given by
cosnψ coshnη and sinnψ sinhnη for n = 1, 2, 3, ... Saving
again on notation, the general solution can therefore be written
as

Az(η, ψ) =

∞∑
n=1

(An sinhnη sinnψ + Bn coshnη cosnψ) .

(1)
The components of the magnetic flux density are calculated
from the vector potential by Bη = 1

h2

∂Az

∂ψ and Bψ = − 1
h1

∂Az

∂η .
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Substituting Eq. (1) into the above equation we obtain:

Bη(η, ψ) =
1

h2

∞∑
n=1

(nAn sinhnη cosnψ − nBn coshnη sinnψ) .

(2)
The field component Bη can be obtained from the (nu-
merically calculated) Cartesian components by Bη =
1/h1 (e sinh η cosψBx+e cosh η sinψBy). At the reference
ellipse η = η0, we can formally obtain the Fourier series
expansion

Bη(η0, ψ) =

∞∑
n=1

(Bn(η0) sinnψ +An(η0) cosnψ), (3)

where Bn(η0) = 1
π

∫ 2π

0
Bη(η0, ψ) sinnψ dψ for n = 1, 2, 3....

The coefficients in Eqs. (3) and (2) can, however, not be
compared as in the case of the circular harmonics, because
the metric coefficient h2 is a function of ψ. To overcome this
problem we define the field components B̃η and B̃ψ by the
coordinate derivative without metric coefficients1: B̃η = ∂Az

∂ψ ,
B̃ψ = ∂Az

∂η . B̃η can then be expressed as

B̃η(η, ψ) =

∞∑
n=1

(nAn sinhnη cosnψ − nBn coshnη sinnψ) .

(4)
At the reference ellipse, η = η0, the field component B̃η
can now be calculated from the Cartesian components by
B̃η = e sinh η cosψBx + e cosh η sinψBy and expressed as
the Fourier series

B̃η(η0, ψ) =

∞∑
n=1

(B̃n(η0) sinnψ + Ãn(η0) cosnψ) , (5)

where Ãn(η0) = 1
π

∫ 2π

0
B̃η(η0, ψ) cosnψ dψ and Bn(η0) =

1
π

∫ 2π

0
B̃η(η0, ψ) sinnψ dψ for n = 1, 2, 3.... Comparing the

coefficients in Eqs. (5) and (4) yields An = 1
n sinhnη0

Ãn(η0),

and Bn = − 1
n coshnη0

B̃n(η0). The vector fields (eigenmodes)
corresponding to the Bn (n = 1, 2, 3, 4) multipole components
are displayed in Figure 1. The field components in the elliptic
aperture domain can therefore be expressed as

Bη(η, ψ) =
1

h2

∞∑
n=1

(B̃n(η0)
coshnη

coshnη0
sinnψ+

Ãn(η0)
sinhnη

sinhnη0
cosnψ),

Bψ(η, ψ) =
1

h1

∞∑
n=1

(B̃n(η0)
sinhnη

coshnη0
cosnψ−

Ãn(η0)
coshnη

sinhnη0
sinnψ). (6)

To avoid the calculation of the flux density by numerical
differentiation, it is again possible to perform a Fourier series
expansion of the vector potential at the reference ellipse:
Az(η0, ψ =

∑∞
n=1 (Cn(η0) sinnψ +Dn(η0) cosnψ).

Substituting the expressions for An and Bn into (1) for η = η0
and comparing the coefficients yields B̃n(η0) = −nDn(η0),

1This is the exterior derivative in differential-form calculus.

Fig. 1. Vector fields corresponding to the Bn (n = 1, 2, 3, 4) multipole
components in elliptic coordinates (top left to bottom right).

and Ãn(η0) = nCn(η0). Hence, we can express Bη (and Bψ)
everywhere inside the domain as

Bη(η, ψ) =
1

h2

∞∑
n=1

(−nDn(η0) sinnψ + nCn(η0) cosnψ),

(7)
i.e., the magnetic flux density is directly expressed as a
function of the multipoles obtained from the series expansion
of the vector potential at η0. Numerical differentiation of the
field solutions is avoided, and yet the multipole coefficients
have their usual physical meaning as the "dipole type" B1 etc.
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Fig. 2. Left: Numerically calculated field distribution between the poles of
a dipole magnet. Middle and right: Field calculated from the truncated series.
Middle: Elliptic coordinates (n = 40, a = 70 mm, b = 30 mm). Right: Circular
coordinates (n = 40, r0 = 30 mm).

IV. RESULTS

Fig. 2 (left) shows the numerically calculated field between
the poles of a dipole magnet. The field resulting from the
truncated series (n=40) is shown in the middle. The reference
ellipse has a major-semi axis of 70 mm and a semi-minor
axis of 30 mm. Notice how numerical errors dominate the
field solution outside of the reference ellipse; all field vectors
that deviate by more than 20% in amplitude are omitted from
the plot. The advantage of the elliptic multipole expansion is
obvious from the comparison to the solution from the truncated
series of the circular multipole expansion (right). The effect
of the fringe field is better modeled in the elliptic coordinate
system and thus the elliptic multipole coefficients are better
suited to the optimization of dipole magnets with a large aspect
ratio of their air gaps. More types of field harmonics will be
presented in the full paper.
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